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Model reduction with Reduced Basis-Methods

Scenario:

• Parametrized partial differential equations: shape, material or control parameters
µ ∈ P ⊂ Rp

∂tu(µ) + L(µ)[u(µ)] = 0 + initial and boundary conditions

• Simulation requests need to be answered rapidly or repeatedly for many differ-
ent parameters, e.g. design optimization, control, parameter estimation, real-time
applications.

Goals:

• Automatic computation of reduced
basis for approximation of numer-
ical simulations UH(µ) by reduced
simulation UN(µ)

• Offline-Online decomposition of
computations
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UKH (µ)

UKN (µ)

{UkH(µ)|µ∈P ,0≤k≤K}

• rigorous a-posteriori error estimators

Implementation and results

The implementation of the experiments is integrated into our package RBmatlab that
provides FV discretizations, algorithms for RB generations, empirical interpolation
and a demonstration GUI for online simulations. We chose a high dimensional func-
tion space with 8000 degrees of freedom and used 16 detailed simulations during the
offline phase.
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Numerical solutions for µ = (0, 0) at timesteps t = 0.0, t = 0.45, t = 0.9.0.20.40.60.81
Numerical solutions for µ = (0.2, 0.2) at timesteps t = 0.0, t = 0.45, t = 0.9.

Time gain factor:
≈ 5

Average approxi-
mation error:
≈ 10−3

Empirical interpolation

• Reduced simulation in RB space is possible,
if the discrete operators and the problem
data functions

– are linear and
– depend affinely on the parameter.

• If not⇒ Empirical interpolation of operators

Idea: Approximate operator with few point
evaluations

• Build collateral RB space of operator evalu-

ationsWM := span
{
L(µi)[U

ki
H (ui)

}M
i=1

• Interpolate efficiently if operator is lo-
calised, by
IM [L(µ)[U ]] :=

∑M
m=1L(µ)[U ](xm)ξm(x)

Base functions ofWM :
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Abstract

We want to discuss parametrized partial differential equations (P2DEs) for parame-
ters that describe the geometry of the underlying problem. One can think of appli-
cations in control theory and shape optimization which depend on time-consuming
parameter-studies of such problems. Therefore, we want to reduce the order of com-
plexity of the numerical simulations for such P2DEs.
Reduced Basis (RB) methods are a means to achieve this goal. These methods have
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gained popularity over the last few years for
model reduction of finite element approxi-
mations of elliptic and instationary parabolic
equations. We present a RB method for
parabolic problems with general geometry
parameterization and finite volume (FV) ap-
proximations. Experimental results are presented for a simple test problem.

Test problem and geometry transformation

We focus on a two dimensional instationary heat equation as a model problem:

Problem 1 (Instationary heat equation). For every µ ∈ P we want to determine a solu-
tion u(x, t;µ) on a polygonal domain Ω(µ) ⊂ R2 for all times t ∈ T := [0, Tmax], Tmax >
0, which satisfies the equations

∂tu(x, t;µ)− a(µ)∆u(x, t;µ) = 0 in Ω(µ)×T (1a)
u(x, 0;µ) = u0(x;µ) in Ω(µ). (1b)

and certain boundary conditions.

In order to apply the RB method, however, the function space must not depend on
the parameter. Therefore, we reformulate the problem on a reference domain, which
results in a convection-diffusion-reaction equation with an (in general) anisotropic
diffusion tensor.
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Figure: Illustration of
a geometry transfor-
mation
We select an arbitrary parameter µ̂ ∈ P that defines the reference domain Ω̂ :=
Ω(µ̂). It is assumed that for every parameter µ there exists a diffeomorphism Φ(µ) :
Ω̂→ Ω(µ). By transforming the heat equation onto the reference domain, we get the
following

Lemma 2 (Geometry transformation). Let u be a solution of problem 1. Then the func-
tion û(x̂, t) := u(Φ(x̂), t;µ), with coordinates x̂ := Φ−1(x) on the reference domain, is
a solution of the equivalent convection–diffusion–reaction equation

∂tû− a(µ)∇x̂ · (GGt∇x̂û) + a(µ)∇x̂ · (vû)− a(µ)(∇x̂ · v)û = 0 in Ω̂×T. (2)

with notations

ṽ(x̂) :=

(
∂x̂1G11(x̂) ∂x̂1G12(x̂)
∂x̂2G21(x̂) ∂x̂2G22(x̂)

)(
1
1

)
v(x̂) := G(x̂)ṽ(x̂), (3)

with G(x̂) =
(
Gij(x̂)

)
i,j=1,2

being the Jacobi matrix of the inverse geometry transfor-
mation G(x̂) := DΦ−1|Φ(x̂).

Numerical approximation:
We discretise a transformed problem with a finite volume scheme on a structured grid
with a gradient reconstruction in order to deal with the diffusion tensor. The scheme
is a modification of [Drblíková&Mikula, 2007].
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